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Boundary-Value Descriptor Systems: Well-Posedness. Reachability, and

Observability

Ramine Nikoukhah AFOSR, t 1615

Alan S. Willsky I
Bernard C. Levy

Abstract

-in this paperl)w introduce:,the class of two-point boundary-value descriptor

systems (TPBVDIS), discrete-time systems described by possibly linear dynamics
and a set of boundary conditions constraining the values of the system "state'

at the two endpoints of the system's interval of definition. By introducing a
standard form for regular pencils we obtain a new and simple generalized
Cayley-Hamilton theorem that simplifies our investigation of well-posedness.
Green's function solution, and reachability and observability for TPBVDS.
There are two distinct notions of reachability and observability that one can
define for TPBVDS. associated with processes that propagate inward from and
outward toward the boundaries. We investigate each of these in detail.
obtaining, among other things, far simpler forms for the reachability and
observability results found previously in literature. In addition we describe e
several methods for the efficient solution of TPBVDS, one involving recursions
from each end of the interval toward the other and two others involving
recursions that proceed outward toward and inward from the boundaries. I

iThe research described in this paper was supported in part by the Air Force
Office of Scientific Research under Grant AFOSR-82-0258 and in part by the
National Science Foundation under Grant ECS-8312921. The authors are with the
Dept. of Electrical Engineering and Computer Science and the Laboratory for
Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA 02139.
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I. Introduction S.

The class of descriptor systems has been the subject of numerous studies Il
I

in recent years (see, for example [1-9.20,21,23,24,26.27]). The fundamental

property with which all of these studies have had to deal, in some form or

another, is the fact that the system function matrix for a descriptor system

need not be proper, leading to impulsive behavior in continuous time and

giving rise to noncausal responses in discrete time. The noncausality of

these models makes them a natural choice for modeling spatially, (rather than

temporally) varying phenomena. Indeed. if one considers generalizations of

descriptor models to more than one independent variable, one finds that these

models arise in many contexts such as in describing random fields,

electromagnetic problems, gravitational anomalies, etc.

In the context just described it is natural to consider descriptor models

together with boundary conditions. While it has been recognized in the

literature that discrete-time descriptor models are often not well-posed when

initial conditions are specified, the implications of using general boundary

conditions have not been investigated for these systems. This paper presents

the initial steps in such an investigation.

There have been two principal stimuli for our work. The first is the ".

work of Krener [12-14] who developed a system theory for standard (i.e. not

descriptor) continuous-time linear systems with boundary conditions. (See also _;j

the related work in [15.16]). Krener's results expose the richness of

boundary value models and a number of important concepts such as new notions

of recursion that are more natural for such systems. The development in this
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paper parallels Krener's, with some important differences required to deal

with the possible singularity of the system matrices involved.

The second stimulus for the study presented here has come from our work

on estimation for noncausal process [10,11,22]. In particular in [22] we have

examined the estimation problem for boundary-value descriptor systems. In

addition to producing, among other things, both algorithms and new types of

generalized Riccati equations, this study also produced a number of questions.

Is the optimal estimator stable and how is stability related to reachability

and observability? Do reachability and observability guarantee existence and

uniqueness of positive definite solutions to the generalized Riccati

equations? Stepping back we see that there are more fundamental questions.

What do neachability and observability mean for boundary-value descriptor

systems? What does stability mean for a boundary-value process defined on a

bounded interval? In this and in subsequent papers we provide answers to

these questions.

In the next section we introduce the class of two-point boundary-value

descriptor systems and investigate their well-posedness. This leads us to the

introduction of a normalized form for these systems. This form not only

normalizes the boundary conditions in a manner analogous to that of Krener but

it also brings the system matices into a form that leads to statements of a

generalized Cayley-Hamilton theorem and of reachability and observability

conditions that are significantly simpler than ones found in the literature.

In Section III we introduce the two notions of recursion, namely inward from

and outward towards the boundary, that were first used by Krener, and we

investigate the processes associated with each. These provide the basis for

3



defining two concepts'of reachability and of observability which are then

examined in detail in the following two sections.

Finally in Section VI we discuss the efficient solution of boundary-value

descriptor equations and then close with a brief discussion in Section VII.

II. Well-Posedness and Normalized Form

The two-point boundary-value descriptor system (TPBVDS) considered in

this paper satisfies the difference equation

Ex(k+l) = Ax(k) + Bu(k). k = 0.....N-I (2.1)

with the two-point boundary condition

Vix(O) + Vfx(N) = v (2.2)

and output

y(k) = Cx(k). k = 0.....N (2.

Here x and v are n-dimensional, while u and y are m- and p-dimensional.

respectively.

As in [2]. we can rewrite (2.1), (2.2) as a single set of equations

Ix = Au (2. Ii)

where

x' = (x'(o) .... x'(N)) (,. )

u' = (u'(O),....u'(N-1), v') (2. )

4
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-A 0 ............... 0
0. -A. E . 0 ............ .0

(2.5a)

0 ...... :0 '-A *E
V 0 ................. 0 Vf1

9A diag (B.....B, I) (2.5b)

We see from this immediately that the well-posedness of (2.1). (2.2) -- i.e.

the existence of a unique solution x(k). k = 0. 1. N, for any choice of v

and u(k), k = 0. 1,....N-I --is equivalent to the invertibility of 'f. Note

that the invertibility of J implies that the submatrix consisting of all but

its last block of rows has full row rank. This in turn implies that a

necessary condition for well-posedness is that (E.A} comprise a regular pencil

[17]. i.e. that aE + 3A is invertible for some and therefore for "most" a and

3. Consequently throughout this paper we assume that this is the case.

An important aspect of regular pencils is that they can be transformed

into a form that greatly simplifies the answering of numbers of questions.

Definition 2.1: A regular pencil {E,A} is in standard form if for some ,Y lri

a+ P3A = I C2. C)

Note that any standard linear system (with E = I) is in standard form

(take a = 1. (3 = 0). Furthermore any well-posed TPBVDS can be transformed o

standard form. Specifically, find a and (3 so that JaE + PAl o 0 and

-lpremultiply (2.1) by (aE + PA) This does not change the system or the

I



"state" variable x, but the new E and A matrices now satisfy (2.6). It is
1'

worth noting that one can also deduce that any regular pencil can be put into

standard form by examination of its Kronecker canonical form [17]. although

that construction involves a similarity transformation on x as well (see

Section VI).

A pencil in standard form has a number of important properties a few of

which are summarized in

Proposition 2.1: Suppose that {EA} is in standard form. Then

(1) E and A commute and thus have a common set of generalized

eigenvectors (which we refer to as generalized system

eigenvectors).

k k
(2) The pencil {E } is regular for all k > 0.

(3) For any k,t > 0, there exist coefficients a0..... a n- so that

n-1
E kA/ =L aiA n - i- l E i  (2.1)

i=O '

Proof: Suppose without loss of generality that a s 0 in (2.6). Then

E = "i + 6A where " = 1/a and 6 = -3/a. rhe commutativity of E and A then

follows immediately. The remainder of (1) follows from the fact that E and A

can be put into Jordan form by the same similarity transformation. Indeed the

Jordan blocks must be of commensurate dimensions (i.e. no block of E or A can

straddle rows of several blocks of the other without extending to include all

6
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of the rows of those blocks).
2

Assume then that E and A are in Jordan form. Since {E,A} is regular, E

and A cannot have a zero eigenvalue associated with a common eigenvector.

This in turn implies statement (2). Finally to prove (3), take any Ek A and

replace E by 7I + 6A. Then apply the usual Cayley-Hamilton theorem to all

powers of A higher than n-l. Finally, multiply each A in the resulting

expression by I = (aE + PA)nkl. Expanding yields an expression of the form

of (2.7)

n-l n-2 n-lStatement (3), which states that {A n EA ...En } span the same

subspace as (A kE t k.t > 0, is a generalization of the Cayley-Hamilton

theorem. Note that this statement is considerably simpler than those in the

literature [6,8,28] for pencils not in standard form.

Standard form also provides us with a simpler well-posedness condition:

Theorem 2.1: Suppose that {E.A} is in standard form. Then the system (2.1).

(2.2) is well-posed if and only if

V.EN + VfAN  (2.S)f

is invertible.

Proof: One method for deriving this result is to apply row elimination to

solve for x(O) and x(N) from (2.4). Methods similar to this will be used in

the next section in defining inward and outward processes. In this proof we

use a different method that provides some computations we can use immediately.

2For example, two 4 x 4 matrices in Jordan form, one with two 2 x 2 Jordan
blocks and the other with one 3 x 3 and one 1 x I Jordan block, don't commute.

7
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To begin, let w be any number such that

w=E N+l A N+1 (2.9)

is invertible (this can always be done since (E .~ A n} is regular). Then

we can express Vf as

where

1 0.....................0 (.1
0 1.....................0

1-

0 0.............1 0
S S S S
-NO Ni .... N.N-1 NN

JA

with

S Nk (V iA -Ek +wV fA Nk E kI)F ,. k=0,.N-I (2.12a)

S NN = (V.E N+ V fA N)F-I(21b

and

.-A E 0.............0 0'(2. 3)
0 -A E.............0 0

0 0 0............-A E
wE 0 0.............0 -A

Note that Y2 is invertible. with

N - 1 N-1 - 1 N-i -lI N-I
AFEA F ... E AT El1 (2.1.1

I N-1i N-1 N-3 3-1 N-I -12 (E r E ... E A r E AT-

NI N-2I E 1A N I
LEAN I,- wE A 2 F- wE ENF A r-



- 4*• ~C 'C C' - ..\ ' ~ C ,v . , .Nu _ V ,.

Consequently V is invertible if and only if Vlis invertible. Examining

(2.11), (2.12) we see that this is the case if and only if the matrix in (2.S)

is invertible.

Definition 2.2: The system (2.1). (2.2) is in normalized form if {E.A) is in

standard form and if

N N
VE + VfA = 1 (2.15)

This form is the counterpart of Krener's standard form in [12-14] Note that

any well-posed system can be put in normalized form by left multiplication of

(2.1) and (2.2). Specifically we first transform (E.A} to standard form as

described previously, to obtain new E and A matrices, and we then multiply

(2.2) by (ViEN + V f AN) -1 to obtain new Vi and Vf matrices satisfying (2.15).

From this point on we assume that (2.1), (2.2) is in standard form.

Next, note that if (2.S) is invertible, the inverse of J' has the same

form as (2.11) except that the last block row of I is

NN NO' ~NN N'**' NN N.N-1' SNN)

-1 -1
Using the expressions for I1  and 12 we can then write down the Creen's

function solution of (2.1). (2.2):

9 2
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N-i -

L-'I-

where

k[A- (VA+ k L-kAN-C-l -1 L~
G(kC) = Nk kN- Lk-l-l(2.17)

ENk[wE-A k(V A+WjVfE)A Nk]ELA kL1F- I L~k

Here G(kL) is called the Green's function cf the TPBVDS. When E and A are

both invertible, (2.17) can be simplified.

-A E -kVEL-N AN-L-l Q

A Ak E NkV E CA L , L~k

For simplicity, in the rest of the paper we assume that r is invertible

for w =1 and use the expression (2.17) for G with (i set equal to 1. This

assumption is equivalent to assuming that no (N+l)s root of unity is an

eigenmode of the system (where ar is an eigenniode if IoE-Al =0). All of the

results in the paper have obvious extensions to the case of an arbitrary value

of (j. as we simply must carry w along in the various expressions.

10



III. Inward and Outward Processes

One of Krener's most important observations in his work was that

boundary-value systems admit two notions of recursion, namely expanding inward

from or outward toward the bounderies. In this section we introduce the

counterparts to these notions for TPBVDS. As we will see, the possible

singularity of both E and A leads to several differences in our context.

Each of the processes associated with these recursions have

interpretations as state processes: the outward process summarized all that

one needs to know about the input inside any interval in order to determine x

outside the interval, while the inward process simply uses input values near

the boundary to propagate the boundary condition inward. In Krener's context

the outward process represented a "jump", i.e. the difference between x at one

end of any interval and the value predicted for x at that point given x at the

other end interval and assuming zero input inside the interval. In our

context we cannot necessarily predict in either direction (because of the

possible singularity of E and A) and therefore must use a slightly modified

definition of the outward process:

z (k.t) = E -kx(t) - A t-kx(k). k<t (3.1)o

Note that this definition agrees with Krener's if E = I. However. in general

zo(k,L) can only be propagated outward whereas in Krener's case the outward

process could be propagated inward as well. An explicit expression for

z (k,L) in terms of the inputs between k and t can be obtained by

o1
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premultiplying (2.4) by

k-L-1 k-L-2 k-L-1
[0.. ,,A ,EA E ,.0

This yields

L-1

z (k,t) = E-kA L-J-Bu(j) (3.2)

j=k

Also, we have the recursive relations

z (k-lL) Ez (k,t) + A -kBu(k-1) (3.3)0

zo(kj+l) = Az (kt) + E -kBu(L) (3.4)

N Furthermore, as in [14] it is straightforward to show that the four-point

boundary-value system

Ex(k+l) = Ax(k) + Bu(k) (3.5)

V x(O) + Vfx(N) = v (3.6)

E L-Kx(L) -A L-Kx(K) = z (K,L) (3.7)

has the same solution as (2.1), (2.2) for ke[ON] \ [K+I.L-1] (i.e. over [O.K]

and [L,N]), so zo(K, L) does indeed summarize all we need to know about inputs

between K and L.

The inward process zi(k.L) can also be defined in a manner analogous to

[14]. Unfortunately in the present context z.(kL) is a complex function of

the boundary matrices, the boundary value v, and the inputs u(j).

je[O,N-1] \ [kL-l]. Specifically, as we demonstrate below, for k<L. zi(k.t)

12
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has the form

zi(kL) = Wi(kL)x(k) + Wf(k.t)x(t)

= Fk [U(O),u(l) ..... u(k-l),u(L),u(t+l),....u(N-1),v] (3.S)

and, in addition

zi(O.N) = v, W.(ON) = V.) = Vf (3.9)

zi(k,k) = x(k) = Fkk(U(O) .... u(N-1), v) (3.10)

where the F are linear functions of their arguments. Furthermore the TPBVDS

Ex(k+l) = Ax(k) + Bu(k) (3.11)

W.(K.L)x(K) + Wf(KL)x(L) = zi(K.L). (3.12)

has the same solution as (2.1). (2.2) for ke[KL]. so zi(K.L) does indeed

represent an inwardly-propagated boundary condition for the original system.

Let us first indicate how (3.8) - (3.10) can be computed in a recursive

manner. The basic idea here is to eliminate values of x near the boundary

from (2.4) in order to obtain a reduced set of equations. The resulting

right-hand side will then involve the remaining u's and a new boundary

condition (see (2.4c)). Specifically, suppose we wish to propagate one step

in from the left, i.e. to compute zi(1.N). Note that for Y in (2.5a) to be

invertible it is necessary for

[ i]

to have full column rank. Consequently we can find a block matrix [T P] of

13
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full row rank so that

T P][ = 0 (3.13)

Premultiplying (2.4) by the matrix

0 1 ..... 0 0

0 0 ..... I (3.14)
T 0 ..... 0 P

then eliminates x(O) and leaves us with the following TPBVDS on [1,N]:

Ex(k+l) = Ax(k) + Bu(k) (3.15)

TEx(1) + PVfx(N) = N + TBu(O) (3.16)

It is easy to see that this system is well-posed, since rank (WV') = rank (9) =

rank (1) - n and the system is defined over an interval with one less time

step. The boundary matrices in (3.16) are not in necessarily in normalized

form. so we then need to premultiply (3.16) by

A (TEN + PVfAN- )- (3.17)

yielding

Wi(l.N) = ATE . Wf(l.N) = APVf (3.1S)

FlNEu(O).v] = APv + ATBu(O) (3.19)

In a similar fashion we can move the right boundary inward, in this case

14
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premultiplying (2.4) by

I 0 ...... 0 0 (3.20)

0 I ..... 0 0

0 0 ..... I 0
0 0 ..... S Q

when [S Q] is a full-rank solution of

Is Q] V = 0 (3.21)

It is also possible to obtain direct rather than recursive expression for

the W's and at the same time to expose the relationship between the inward and

outward processes that we will use in Section V. Using the expression (3.1)

for the outward process z and (2.4) we can write

-Ak  Ek  0 0 x(O) z (O.k) (3.22)

0 -AI-k EL-k 0 x(k) 00 -A' E EZo xkk))

0 0 AN-L EN- x(L) (L.n)

Vi  0 0 Vf x(N) v

As we did earlier, we construct a full-rank matrix

[Ti(k.L). Tf(k.t). P(k,)] so that

-A 0 

[T.(k,L). Tf(k.), V(ktl] 0 EN =0 (3.23)

If we then multiply (3.22) by

15



0.kL 0 0fkL
S(k.)(k,t )  Tf(k) P(k) (3.24)

we obtain

-AT- k  E t-k  x(k) Z (kJ)

Ti(kL)E k -Tf(k.)A N - t  x(L) T i(k.L)Zo(O.k)+Tf (k.L)zo(t.n)+P(k.t)v

(3.25)

Equation (3.25) is essentially the result of eliminating all variables in

(2.4) other than x(k) and x(t) by propagating outward to summarize all inputs

between k and L and inward to summarize the effect of the boundary condition

and inputs from 0 to k and L to N. Consequently we can identify the second

block of equations as specifying an unnormalized version of the inward

process. Therefore letting

A(kL) = [Ti(kL)EL - Tf(k,)AN-k ]- 1  (3.26)

we have

Wi(k,L) = A(kL)Ti(kL)Ek (3.27)

Wr(k.t) = -A(k.L)Tf(k.)A N - t  (3.2S)

and

Zi(k,() = ,(k.t)[Ti(k.J)zo(O.k) + Tf(kJ)z o(tN) + P(k.i)v] (3..2 )

In the case of standard linear systems reachability corresponds to the

ability to drive the state of the system to an arbitrary value by approprizlte

16
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choice of the input sequence. It is well known that if such a system is

reachable it is possible to reach an arbitrary state value by proper choice of

the n previous input values, where n is the dimension of the system. In the

case of a TPBVDS. however, there is a distinction between the concept of

reachability by choosing the inputs in an n-point neighborhood and the concept

of reachability by choosing the inputs in the whole domain of definition (i.e.

[0, N]). The first concept we shall refer to as strong reachability and the

second concept as weak reachability. These concepts correspond, respectively.

to Krener's reachability on and reachability off which he in turn defines in

terms of the outward and inward processes, respectively. We shall do the same

in the next two sections in which we also analyze the corresponding

observability concepts.

IV. Strong Reachability and Observablity

We begin with an examination of reachability, and for this we need the

following

Definition 4.1: The system (2.1). (2.2) is stron.ly reachable on [K.ij if he

map

{u(k)tkL[KL]} -z 0(KL)

is onto. The system is strongly reachable if it is strontgly re:chable on '-.ome

interval.

From (3.2) we can write

17
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u(K)

zo(KL) = R (L-K) (4.1)

u(L-1)

where

R (j) = [AJ-1B:EAJ- 2 B:.. :EJ-'B] (4.2)s

In anticipation of the following result, define the strong reachability matrix

R = R s(n) (4.3)

and strongly reachable subspace

s = Im(R) (4)

Theorem 4.1: The following statements are equivalent:

(a) The system (2.1). (2.2) is strongly reachable.

(b) The strong reachability matrix R has full rank.s

(c) The matrix [sE - tA:B] has full rank for all (st) x (0.0)

(d) The state x and any point ke~n.N-n] can be made to assume any

desired value by proper choice of inputs u(j). jL[k-n.k+n-/]. ,11d

this can be accomplished for any choices of V. and V for which1 f

(2.1). (2.2) is well-posed.

Before proving this result, let us make several comments. Note first

that condition (c) is one of the reachability conditions found in the

descriptor literature [7,26]. By introducing the standard form of a retluar

pencil we are able to obtain a condition, namely that (4.2) is of full rik

for j = n, that is far simpler than those presented previously. Note ;llso

IS~



that as for standard linear systems, condition (6) tells us that a system is

strongly reachable if and only if it is strongly reachable over intervals of

length n. On the other hand, in condition (d) we require that x(k) can be

driven to an arbitrary value by applying appropriate inputs over the 2n-poirit

symmetric neighborhood of k. In fact, one only needs an n-point neighborhood

of k, but the extent of this interval before and after k depends on the

matrices E. A. and B (i.e. on the causal/anticausal structure of (2.1)).

Condition (d) simply uses the union of all such n-point intervals and

therefore is approprate for all TPBVDS. Finally, note that strong

reachabilit does not depend on the boundary matrices V iand Vf (as long as

(2.1). (2.2) is well-posed). This can be seen directly from the definition of

z (kj) or from condition (b).

Proof: The equivalence of (a) and (b) follows immediately from the

generalized Cayley-Hamilton theorem (statement (3) of Proposition 2.1)). A,

an alternate proof, note that

Im[Rs(k+l)] = ERs(k) + ARs(k) (..,)

so that Im[R (k+2)] = Im[R (k+l)] if Im[R (k+l)] = Im[R (k)]. Also. th ink, to

(2.6)

Im[Rs(k)] I lm[R (k+l)] ( L,)

Simple dimension counting then shows that

19



Im[Rs(k)] = Im[Rs(n)] Vk > n (4.7)

The equivalence of statements (b) and (c) is proven as follows. First

assume that c s 0 in (2.6). In this case

A = Im[B:AB:... :An-I B] (4.s)S

(This can be verified by setting j=n in (4.2) and then by replacing

E by (iI + 6A)). Also, (2.6) allows us to write

sE - tA = uI - vA (..))

where

u = (s/a) v = t- sf3/a (-I. lo)

Note that (u.v) = (0.0) if and only if (s.t) = (0.0). Thus statement (c-) i

equivalent to showin that [ul-vABj is of full rank for (,.v) i (s.)). "iu,

that this is trivlillv the caise for u X 0. v = 0 since [I :1] h:ls f11 r:1jnk

v ; 0. we can clearly divide uI - vA by v. Consequently. statement (c) 1"

equivalent to [wl-A:B] being of full rank for all w g 0. The eiivaletice 4

this statement and that of (1.) being the entire state ,pIrce Is the

well-known result for standard linear systems (see. for eximp l,. [2') ,

the case in which or = 0. we can argue in a similar fashion hy r,vr.'.

roles of E and A. Note also that if aT x 0 and [3 0. then

'A = lm[BWAB:... :A n-I] = [ EB : . . I.-itS
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Finally, consider the equivalence of statements (b) and (d). Because of

the linearity of the system, we can assume that v = 0 and u(j) = 0 for

je[O,k-n-1] and jE[k+n.N]. In this case (2.16). (2.17). and (3.2) allows us

to write

x(k) = A k[A-E N-k(ViA+V fE)E k]- A N-k-nz(k,k+n)

+ EN-k[E-A k(ViA+VfE)A N-k] E (k-nzk-n,k) (.1.12)

Let E be an arbitrary vector and choose inputs u(j). j6[k-n.k-1] so that

z (k-n.k) = Enf and u(j), jL[k,k+n-l] so that z (k,k+n) = -An,. With these

choices which can be found since R has full rank, (4.12) reduces tos

x(k) = f (-I.A)

This shows that (a) implies (d). To show the reverse implication, we rmake the

following choice for V. and Vf
1

V. = A- E (1.1 1a
-1

V = '-J A (. lIb

where
AN+l

A N+ I + --A (.H.

and , is any number that makes A invertible. Note that (2.1). (2.2) with rhi-.

choice for V. and V. is in normalized form. Let us take v = 0 and u(.j) =

for .jF[O.k-n-1] and jt[k+nN]. Then in this case (2.1G). (2.1 1) red .ce t,(
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x(k) = A[A n-lEN-n-l Bu(k-n) + A ,-2EN-nBu(k-n-l) +.

+ E NBu(k-l) + -,A NBu(k) + A N-IEBu(k+l) +

+ -TEn-IAN-n+lBu(k+n-1)] (1 1f;)

The range of the mapping defined in (4.16) is

A[EN-n-ls + AN-n+ ls]

nAssuming that (d) is true, this must also be all of R . Consequently we

conclude that 1 = IRn for this choice of Vi ,V . Thanks, then, to statement

(c) of the theorem, we see that A s = Rn for any ViVf for which the IPBVDS is

well-posed, so that statement (a) also must hold.

We next wish to consider the dual concept of strong observability. To do

this we proceed in a manner analogous to that for casual linear systems.

Specifically. for such systems observability corresponds to being able to

reconstruct the state at some point in time, given present and future

observations, when all future inputs are zero. The counterpart to this in our

context is the following.

Definition 4.2: The system (2.1) - (2.3) is strongly observable on [K.[-] if

the map

z .i(K ,L ) -- (y (k ) lkc[K ,L ]) -. 7

defined by (3.11), (3.12) with u 0 is one-to-one. The system is strnlv

observable if it is strongly observable on [K.L] for all K.L such that

L-K > n-l.
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Since (3.11), (3.12) is in normalized form, we can adapt the Green's

function solution (2.16) to obtain an explicit expression for the mapping

defined in (4.17). Specifically

y(K)

y(K+l) - O(L-K)zi(K.L) (4.18)

y(L)

where
cEj

0 0) C c -1 (4.19)
S

CA

In analogy with our reachability results, we define the strong observability

matrix

o = o (n-l) (.20)

and the strongly unobservable subspace

0s = ker(O) (-.21)

Theorem 4.2: The following statements are equivalent.

(a) The system (2.1) - (2.3) is strongly observable.

(b) The strong observability matrix 0 has full rank.

(c) The matrix
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[sE - tA1
ci

.1

has full rank for all (s,t) / (0.0).

(d) The state x at any point ke[n,N-n] can be uniquely determined

from the outputs y(j), je[k-n,k+n-1] and u(j), j6[k-n.k+n-2].

This can be accomplished for any choice of V. and V for which
1f

(2.1). (2.2) is well-posed.

.5,

The proof of this theorem is analogous to that for Theorem -4.1 nd

therefore is omitted. Also, one can make similar comments concerning this

result. For example. thanks to the generalized Cayley-Hamilton theorem.

statement (b) is considerably simpler than expressions that have appeared

previously. Also, strong observability depends only on E. A. and C and not on

the particular choice of boundary matrices V. and V

V. Weak Reachability and Observability

As Krener noted, in contrast to strong reachability and observabilitv

the concepts of weak reachability and observability depend intimately on the

particular choice of boundary matrices, as the structure of these mitrices canr-

increase reachability and observability beyond that which miht be :ippireir

from an examination of system dynamics alone. The examination of these wenker .

concepts for TPBVDS is somewhat more complicated than in Krener's case because

of the possible singularity of E and A.

24
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Definition 5.1: The system (2.1), (2.2) is weakly reachable off [K,L] if the

map FKL defined in (3.6), with v .0, is onto. The weakly reachable subspace

Rw(K,L) is the range of this map. The system is weakly reachable if it is

weakly reachable off [K,L] (i.e., if A (K,L) = IRn) for all K,Le[nN-n].

Note that the weak reachability condition is a natural counterpart to the

causal reachability definition in which we require that the state can be

driven to an arbitrary value from zero initial condition. Also, note the use

of the wording "reachable off", emphasizing the fact that the inputs used in

this case are confined to the exterior of the interval [KL].

An important property of a causal system is that the dimension of

reachable space does not change, and in fact the reachable space itself is

time-invariant. The following theorem shows that the first of these

statements is also true for TPBVDS's. Example 5.1 later in this section shows

that the second is not.

Theorem 5.1: The dimension of Iw(K.L) is constant for K.L6[nN-n].

Proof: Let K.L be any points in [n.N-n]. From (3.29) (with v set to O) we

see that

s t (K.L) = A(K.L)[T i(K.L)As+Tf (K,L)] (L. I

Now assume that K-l&[n.N-n] as well. We would like to show that
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dim A w(K-lL) = dim w (K•L) (5.2)

To do this, we first must find Ti(K-1,L) and Tf(K-lL). In fact, what we show

is that a possible set of choices for T. Tf. and P is

Ti(K-1,L) = Ti(KL)A (5.3a)

Tf(K-1,L) = Tf(KL) (5.3b)

P(K-lL) P(K,L) (5.3c)

where A has the same eigenstructure as A except that the zero eigenvalue in A

a.- 3
has been replaced by 1 in A. Without loss of generality we can assume that A

is in the Jordan form

A= (5.4)
0 N

where J is invertible and N is nilpotent. In this case

0 N+Ij

For (5.3) to be a valid choice, two conditions must be satisfied. First

[Ti(K-1,L).Tf(K-l.L),P(K-1,L)] must be of full rank. This is obviously the

case since [Ti(K.L),Tf(KL),P(KL)] is, and A is invertible. Secondly we must

3 Since similarity transformations have no effect on the dimension of the
reachability spaces.
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show that (3.23) is satisfied with k = K-1 and t = L, i.e., we must verify

-T.(KL)AA + P(KL)Vi = 0 (5.6)

when we know that

-Ti(KL)AK + P(KL)Vi = 0 (5.7)

K-i K-1 K
However, since K-i > n, N = 0, so that AA = A

Consequently, we can write

Aw(K-IL) = A(K-1,L)[Ti(K.L);Lls + Tf(K,L)ls] (5.8)

(Note that (4.25) may not be valid if K-i < n, since A (K-i) may be smaller5

than A .) Comparing (5.1) and (5.8) and using the fact that the A(kl) are

all invertible, we see that (5.3) will hold if we can show that

A =5 (5.9)

Note first that A sC 91L , so that (5.9) is clearly true if A is invertible. If

A is singular, note that a cannot be zero in aE + 3A = I, so that A is givenS5

by (4.8). Then assuming that A and A are as in (5.4) and (5.5) and using the

fact that J is invertible, we see that (5.9) will hold if we can show that

0 1 1A s C A (5.10)
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If we partition B compatably with (5.4) we see that

I B B n- B 1A (5.11)

S B JB1.. . . . . .. .. . . . . .. . .J

where 1. is the nilpotency degree of N. Let J be n 1 xn 1 and N be n 2xn 2 (so that

n n2= n and p. n 2). Suppose that [fl .52']'615 ; we wish to show that

[Of 2 ]'0 s However, if Ef'f''js there exist inputs u. .i L ....

so that

E2 = N'B2u, (5.13)

i_=0

We then wish to show that we can augment this sequence with u. .1 4__n so

that

n-I

i JB 1 u = 0(51)

i =0

i.e., so that

n-1 A- I

i J'"B 1 u = _jj ( J'Blu.) (.5

i =JA i=_0

The right-hand side of (5.15) is in the reachable space of (J,B 1).

Furthermore, since n-i-p n1 C1. the left-hand side of (5.15) can be driven to
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any point in the reachable space of (J.B1 ).

So far we have shown that kw(K-1.L) has the same dimension as Aw(K.L) as

long as K-1 > n. In a similar manner we can show that A (KL+1) has the same

dimension as well, as long as L+l < N-n. This then completes the proof of the

theorem.

Note that one immediate consequence of Theorem 5.1 is the following

Corollary: The system (2.1) - (2.2) is weakly reachable if it is weakly

reachable off some [K,L] with K.LeCn,N-n].

Hence, in order to test for weak reachability we need only examine the

reachability space A w(k.k) of zi(kk) = x(k) for any kE[nN-n]. Note further

that R (k.k) is the range space for the map from {u(O).,u(N-l)} to x(k)

(with the boundary value set to zero); i.e., weak reachability corresponds to

being able to drive x(k) to an arbitrary value using the entire interval of

the controls. Thanks to statement (d) of Theorem 4.1, we see that weak

reachability is indeed weaker than strong reachability which corresponds to

being able to drive x(k) to an arbitrary value using only inputs within n time

steps of k.

While (5.1) provides in principal a method for computing weakly reachable

subspaces, it involves a significant amount of computation in order to

determine A(KL), Ti(KL), and Tf(K.L). As the next theorem shows, there is

an easier method for computing R (k.k).
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Theorem 5.2: Let ke [n.N-n]. Then

w(k'k) = Im[A kENk(VA + VfE)Rs  R ]

= Im[Ak E N-kViRs :A kE N-kVfRsRs] (5.16)

Proof: From (2.16), (2.17) (with w = 1 for simplicity) we see that

A (kk) = Im[A k(A-E N-k(VA+VfE)E k)R(N-k)EN-k (E-A k(VA+VfE)A N-k)R(k)]

(5. 17)

That is, if wel w (kk). then there exist x,yeAs so that

k N-kV k N-k kN-kw = A [A-E (viA+VfE)E ]x + E [E-Ak(ViA+VfE)A -y

(A k + l  E N-k+ly) - AkE k(VAi A+VfE)[E kx+A N-y] (5. IS)

Since A is E- and A- invariant, we see thats

k N-k
w(kk) C Im[A E (ViA+VfE)RR] (5.19)

The first equality in (5.16) will be proved then if we can show that any w in

the range of [A kEN-k (ViA+VfE)RsRs is in Aw(k'k)" Clearly any such w can be

written as

w =s A k (EN-k(ViA+V fE)t (5.20)
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with s,te.S Comparing this to (5.18) we see that we will be finished if we

can show that there exists x,yeA so that
s

Ak+1 EN-k+l x s

Ek AN-k H
The matrix on the left-hand side of (5.21) is invertible, and solving (5.21)

we obtain

F-1AN-k -I EN-ki s

= F IEkI- + (5.22)A -E -1A E

where F is defined in (2.9) (with oi = 1). Since A is E- and A- invariant, it5

is also F - invariant, so that x and y are in 91 .s

Finally we need to verify the second equality in (5.16). Since ' is E-s

and A- invariant and ViEN+VfAN = I, we see that

Im[(ViA+VfE)Rs R_] C ImV iR s VfR s] (5.23)

On the other hand,
Im[VRRs] = Im[Vf(EN+I-AN+l)Rs',Rs]

C Im[(Vi A+VfE)EN Rs (ViE N+VfA N)ARs :Rs]

C Im[(ViA+VfE)Rs :Rs] (5.2.1)

Similarly

Im[ViR :R ] C Im[V ,A+VE)RR1 (5.2.5)

Combining (5.23). (5.24), (5.25) we see that
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Im[(ViA+VfE)RRs Rs = Im[(V iRs :VfR s] (5.26)

Finally

Im[AkEN-kViA+VfE)RsR] -- Ak E N-kIm[(ViA+Vf)RsR s] + ' s

A kE N-kIm[ViRs VfRs] + As

Im[AkEN-kViR s :AkEN-k fR s :R (5.27)

Note from (5.16) that A C Aw (k.k) for k e [n,N-n]. consitent with our

earlier statement that weak reachability is indeed a weaker condition.

Example 5.1: Consider the system (2.1), (2.2) with

1 0 01

E = I. A = 0 0 1 , B = 0
0 1 0 0

1 0 0 0 0 0

V, 0 1 0 V (-.2.)
t 0 1 f 1 0

This system is in normalized form for all N. Since E = 1. strong reach:lilitv

reduces to the usual notion of reachability for causal systems. Clearly theri

s is spanned by the vector [1,0.0] T
. From (5.16) we find that P w(k,k) is

spanned by [1.0.0] r and [0,0,1] T for k even and by [1.0.0] and [0, 1.,0] for k

odd. This example illustrates the mechanism through which some states ma, be

weakly but not strongly reachable. It also demonstrates another fact peculliar

to boundary-value systems: while the dimension of At w(k.k) remains constant

for ktcn,N-n], this subspace is not dynamically-invariant. In particular.
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while the dynamics (5.28) allow the input to influence only the first

component of x(k). the boundary matrices (5.30) couple the first and third

components, allowing indirect control of the third. The A-matrix then

produces the oscillatory behavior in AR (k.kL.
w

Theorem 5.2 provides us with a computable weak reachability condition:

we check to see if either of the matrices in (5.16) is full rank. The

following result provides a simpler result of this type as no powers of . or \

must be computed.

Theorem 5.3: The system (2.1).(2.2) is weakly observable if and only if

either of the matrices

[EA(ViA+V f E)Rs :Rs] (5.30a)

or

[EAViRs .EAV fRs IR] (5.30b)

has full rank.

Proof: We begin by showing that for any subspace 0 of [Rn

EO + A =R n  *.-4 E 2 + A' =R n

Let ,5 be a subspace so that

s S

Then

E2D + As = E(Ei- + As + s  = E(9 R ( 3S) + A'S

= ES , (.3)
s
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Dimension counting then shows that the right-to-left implication in (3 1) 1,

true. Suppose that F1 + A s = n. Then
S *

2 + + E(Eb + A s) + 1 = E(I n ) + t J El + s = [R1 ( ,),
SS S -- S S

Note that by iterating (5.31) we see that if E k + 31 = IRn for some k 0. it
S

In
equals R for all k > 0. A similar statement can be made with E replaced by

A. and combining these we have that Ek A I t = IR n for some pair k.1 > 0 it

n%and only if EAT + -1 = . The theorem then follows from the applica-tion of
s

this result with 2 = Im{(ViA+VfE)Rs}.

Now let us briefly present the corresponding concept of and results ot.

weak observability.

Definition 5.2: The system (2.1)-(2.3) is weakly observable off [K,.I] if the

map from z [K.L] to (y(j) jj[O.K]U[LN])} defined by (2.3) and the four-poitt

boundary-value problem (3.5)-(3.7) with v = 0, u = o. is one-to-one. lhe

weakly unobservable subspace Ow(K.L) is the kernel of this map. The system is

weakly observable if it is weakly observable off [K.L] (i.e., if

Ow(K.L) = {0}) for all K.L6[n-lN-n+l].

Theorem 5.4: The dimension of Ow(K.L) is constant for K.L+,[n-l.N-n+l].

Corollary: The system (2.1)-(2.3) is weakly observable if it is weakly
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observable off some [K.I.].

A consequence of this last result is that in order to test for we,4k

observability we need only examine the unobservability space (w(k.k+l) of"

z 0(k.k+l) = Bu(k). Furthermore, note that t (k.k+l) is the kernei of the

mapping from Bu(k) to the full sequence of measurements y(O)...y(N) (with v

set to zero). This is weaker than strong observability which involves the i,,

of outputs restricted to lie within n time steps of k.

Theorem 5.5: Let kL[nN-n]. Then

0 w (k,k) = ker t(V A+V sNkl k
6s ( iA+VCE) A - -IE

Ws

0
5

t v.AN-k-IE k
=ker s E (-,. ,,)

t) V AN-k-IE k
s f

Note that kerC (kk) C kert . demonstrating again that weak observabilitv is .i

weaker condition.

Theorem 5.6: The system (2.1)-(2.3) is weakly observable if and only if

either of the matrices

0

sO(ViA+Vf E)AE

% 35



0
s

0 5 iA (5.3Cjb)

0sV fAE

has full rank.

VI. Efficient Solution of TPBVDS's

Unlike causal systems, the solution of a TPBVDS cannot be computed usinr'

a simple recursion since the solution x(k) depends on inputs over the entire

interval. There are. however, several efficient methods for solution which we

describe in this section.

6.1 The Two-Filter Solution

In his study Krener derived a solution by solving his continuous-time

linear system assuming a zero initial condition and then correcting for tile

actual boundary conditions. Since E and A may both be singular for a TPBVDS.

the analogous procedure, first described in [22]. is somewhat more complex as

we must identify which parts of the system can be solved in the forward and

backward directions.

From Kronecker's canonical form for a regular pencil [1T] we can find

nonsingular matrices T and F so that 
4

4The decomposition in [17] splits the pencil zE-A into forward dynamics

corresponding to a pencil of the form zI-A and backward dynamics
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1 0II

FET 1  0 A2  (6. li)

FAT- = A 1 (6. 1b)

so that all of the eigenvalues of A1 and A2 have magnitudes no larger than 1.

Define

x l(k)j = Tx(k) (65.2)x 2(k)]

Then we obtain

xl(k+l) = A~xl(k) + Blu(k) (6.3a)

x2 (k) = A2x2 (k+l) - B2u(k) (6.3b)

where

B21 FB 
(.{

Note that (6.3a), (6.3b) are asymptotically stable recursions if jzE-AI his no

zeros on the unit circle. Finally, given the transformation (6.2), the

boundary condition (2.2) takes the form

+ ',v(0]  1(N)

iV20 x2(O) + [V2f ] x2 (N) .

corresponding to z-l-A2 where A2 is nilpotent. The only difference in (6.1).

(6.2) is that the unstable forward modes of A have been shifted into the

backward dynamics A2.
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-Vi:V2i]  -1 VT-I (6.6)
[V1.V2. = VT , [Vlf:V2f] = VfT -

Employing the forward/backward representation (6.3) of the dynamics, a

general solution to (2.1). (2.2) is derived as follows. Let x, (k) denote the

solution to (6.3a) with zero initial condition, and let x2 0(k) denote the

solution of (6.3b) with zero final condition. Then

x1(k) = A1 kx(o) + xl (k) (6.7a)

x2(k) = A2 N-kx2 (N) + x2 0(k) (6.7b)

Substituting (6.7) into (6.5) and solving for xl(O) and x2 (K) yields

x2 (N) . H (v-Vfx, 0(N)-V 2 x2 0)} (6.S)

where

N N -1 -iN - I -NIi [Vi VN 1 AI:v2iA 2 + V2 f] = V.T (FET ) + VfT (FAT-)

Finally, substituting (6.8) into (6.7) yields

xO(k) 1 [k 0 1 (k.O
= A2 N0k + 1

x 2 k) 0A 2if 2 2 ()] 2 (k)

The solution in the original basis can then be obtained by inverting (6.2).

Note that the transformed matrices in (6.1). (6.2) commute and are in
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fact in a form close to our normalized form (see discussion in the next

section). However, the full importance of transforming the system into

normalized form, and in particular its implication for a generalized

Cayley-Hamilton theorem and the resulting form of reachability and

observability results, has not been previously recognized. Also, the

algorithm just described provides an equivalent well-posedness condition,

namely the invertibility of H in (6.9).

6.2 A Parallel Outward-Inward Solution

A second efficient algorithm can be constructed by noting that the

solution x can be recovered from the outward process z and the inward process0

z.. For simplicity, let us assume that N is odd and that E and A commute (as

they would if (2.1), (2.2) is in normalized form). It is then possible to

specify a recursive algorithm for the computation of z (jN-j) for0

j = 0...(N-l)/2, starting from the initial condition at the center of the

interval (with j = (N-l)/2):

zo((N-l)/2, (N+1)/2) = Bu((N-1)/2) (6.11)

and propagating symmetrically outward from the center:

z (j-l,N-j+l) = EAz (j.N-j) + AN 2 J+Bu(j-) + E Bu(N-) (6.12)
0 0 u" 1 +ENJl "(.j (6"2

Similarly we can compute zi(j.N-j) recursively inward from the initiil

condition
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zi(O,N) = v (6.13)

using a recursive procedure based on that outlined in Section III (see

(3.13) - (3.21)).

The solution x can then be computed as

x(j) -A - 2  EN- 2j 1 Z (J.N-j )

x(N-j) J Wi(jN-j) Wf(j,N-j) zi(-N-]j)

where the inverse on the right-hand side of (6.14) is guaranteed to exist

thanks to the well-posedness of (2.1), (2.2).

6.3 A Serial Outward-Inward Solution

As a first step in this algorithm we compute z (jN-j) outward from the

interval center as in (6.11), (6.12). We then use these values, together with

the boundary condition v, to solve for x(j) and x(N-j) recursively as we

propogate back toward the interval center. To begin, note that

x(0) -A[N EN  -1 z(O,N)

x(N) v Vf  v)

where the inverse indicated on the right-hand side of (6.15) is again

guaranteed to exist thanks to well-posedness. To continue with the inward

recursion, note that from (3.1)
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I2
-AN-2Jx(j) + EN-2jx(N-j) = Zo(j.N-j) (6.16)

while from (2.1)

6.Ex(j) + Ax(N-j) = 6.Ax(j-1) + Ex(N-j+l) +6jBu(j-1) - Bu(N-j) (6.17)

for any je[l.(N-1)/2] and any scaler 6.. We then have the recursion

x(N-j) [ -AE A 1 Ax(j-l)+Ex(N-j+l)+S6jBu(j-1)-Bu(N-j)

(6.18)

where 6. is chosen so that the inverse on the right-hand side of (6.18) exists3

(for example, if IzE-AI has no roots on the unit circle. 6. can be taken equal

to 1).

VII. Conclusion

In this paper we have analysed some of the system-theoretic properties of

TPBVDS's. As in Krener's analysis of continuous-time, non-descriptor,

boundary-value systems, there are actually two distinct concepts for

reachability and for observability of TPBVDS's, and in this paper we have

investigated each of these. In addition, we have described three methods for

the efficient solution of TPBVDS's, one based on a variation on Kronecker's

form for a regular pencil and two on the inward/outward recursions and

processes that play such an important role in the analysis of these systems.
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An important step in our analysis is the introduction of a standard form

for regular pencils. This form permits us to obtain a simple form for a

generalized Cayley-Hamilton theorem which in turn leads to simpler

reachability and observability results than have appeared previously in the

literature. It is worth noting that this generalized Cayley-Hamilton theorem

and the resulting reachability and observability results continue to hold if E

and A take the form EQ°1 AO°]
E= [ E2  A= 0 A 2  (7.1)

where E., Ai are in standard form, i.e., a.E. i + 0iAi = I, but where (a ,0i)

and (a 2 02) need not be the same. An example of such a form is the variation

of Kronecker's form given in (6.1), (6.2).

There are a variety of extensions and complements to the results

presented in this paper. Many of these involve the examination of stationary

TPBVDS's. i.e., models as in (6.1), (6.2) but for which the Green's function

G(k,t) in (2.17) depends only on k-t. As we will describe in a subsequent

paper, the analysis of stationary TPBVDS's can be significantly simplified and

extended. For example, the description and recursive computation of the

inward process zi(k,) is far simpler in the stationary case. In addition,

for such systems the weak reachability and unobservability spaces are

time-invariant (i.e., they don't rotate). As a simple example, consider the

class of cyclic processes, i.e., processes for which V = -Vf = I (so that

x(O) = x(N) if v = 0). Not only is such a process stationary but from (5.16),

(5.35) we see that in this case weak and strong reachability and observability
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concepts coincide.

There are also a number of other system-theoretic concepts that can be

developed in detail for a stationary TPBVDS's. For example, there exists -I

minimal realization theory for such systems analogous to that described by

Krener. In addition, it is possible to develop a concept of stability for

such systems, reflecting the effect that the boundary conditions have on the

process near the center of the interval as the boundaries recede. Not only is

such a concept useful in determining the numerical well-posedness of

algorithms such as those described in Section VI, but it also provides the

basis for analyzing stochastic TPBVDS's and the properties of optimal

estimators for such processes [22].
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